A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools

نویسندگان

  • Jixiang Yang
  • Yusuf Altintas
چکیده

Nonlinear and configuration-dependent five-axis kinematics make contouring errors difficult to estimate and control in real time. This paper proposes a generalized method for the on-line estimation and control of five-axis contouring errors. First, a generalized Jacobian function is derived based on screw theory in order to synchronize the motions of linear and rotary drives. The contouring error components contributed by all active drives are estimated through interpolated position commands and the generalized Jacobian function. The estimated axis components of contouring errors are fed back to the position commands of each closed loop servo drive with a proportional gain. The proposed contouring error estimation and control methods are general, and applicable to arbitrary five-axis tool paths and any kinematically admissible five-axis machine tools. The proposed algorithms are verified experimentally on a five-axis machine controlled by a modular research CNC system built in-house. The contouring errors are shown to be reduced by half with the proposed method, which is simple to implement in existing CNC systems. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part II: Precision Contour Controller Design

The accurate tracking of tool-paths on five-axis CNC machine tools is essential in achieving high speed machining of dies, molds, and aerospace parts with sculptured surfaces. Because traditional CNCs control the tracking errors of individual drives of the machine, this may not lead to desired contouring accuracy along tool-paths, which require coordinated action of all the five drives. This pa...

متن کامل

Non-circular Contouring Measurement for Servo Tuning and Dynamic Performance of a CNC Machine

To achieve high quality and productivity, it is important to know what is the maximum feed rate while meeting the required part accuracy. Laser interferometers and telescoping ballbars have been used for the positioning and circular contouring measurement. However, a conventional laser is limited by the line-of-sight, and cannot tolerate large lateral deviations. A telescoping ballbar is limite...

متن کامل

Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part I: Modeling

Aerospace, die, and mold industries utilize parts with sculptured surfaces, which are machined on five-axis computer numerical controlled machine tools. Accurate path tracking for contouring is not always possible along the desired space curves due to the loss of joint coordination during the five-axis motion. This two-part paper presents modeling and robust control of contouring errors for fiv...

متن کامل

Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools

Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remai...

متن کامل

Feed optimization for five-axis CNC machine tools with drive constraints

Real time control of five-axis machine tools requires smooth generation of feed, acceleration and jerk in CNC systems without violating the physical limits of the drives. This paper presents a feed scheduling algorithm for CNC systems to minimize the machining time for five-axis contour machining of sculptured surfaces. The variation of the feed along the five-axis tool-path is expressed in a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014